z^2-(2+i)z-2i=0

Simple and best practice solution for z^2-(2+i)z-2i=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for z^2-(2+i)z-2i=0 equation:


Simplifying
z2 + -1(2 + i) * z + -2i = 0

Reorder the terms for easier multiplication:
z2 + -1z(2 + i) + -2i = 0
z2 + (2 * -1z + i * -1z) + -2i = 0

Reorder the terms:
z2 + (-1iz + -2z) + -2i = 0
z2 + (-1iz + -2z) + -2i = 0

Reorder the terms:
-2i + -1iz + -2z + z2 = 0

Solving
-2i + -1iz + -2z + z2 = 0

Solving for variable 'i'.

Move all terms containing i to the left, all other terms to the right.

Add '2z' to each side of the equation.
-2i + -1iz + -2z + 2z + z2 = 0 + 2z

Combine like terms: -2z + 2z = 0
-2i + -1iz + 0 + z2 = 0 + 2z
-2i + -1iz + z2 = 0 + 2z
Remove the zero:
-2i + -1iz + z2 = 2z

Add '-1z2' to each side of the equation.
-2i + -1iz + z2 + -1z2 = 2z + -1z2

Combine like terms: z2 + -1z2 = 0
-2i + -1iz + 0 = 2z + -1z2
-2i + -1iz = 2z + -1z2

Reorder the terms:
-2i + -1iz + -2z + z2 = 2z + -2z + -1z2 + z2

Combine like terms: 2z + -2z = 0
-2i + -1iz + -2z + z2 = 0 + -1z2 + z2
-2i + -1iz + -2z + z2 = -1z2 + z2

Combine like terms: -1z2 + z2 = 0
-2i + -1iz + -2z + z2 = 0

The solution to this equation could not be determined.

See similar equations:

| (69+24)= | | x+3z=10 | | 2(-5+x)=-(-11+x) | | 30=5(x-3)+4(x+4) | | 3x^2+2-18=156 | | u^2-2u-24= | | 4x+27y=27 | | (29+125)= | | 7y-4x=84 | | 7x-10=3(x-2)+4(x-1) | | n=4*6*5 | | 69+24= | | -4+2x=-12+8x | | 0.2(x+5)0.2=10 | | 53-(294)= | | v=Pir^2h-ab | | 40=4[x-10] | | 29+125= | | 2[x+3]=42 | | 16-65= | | 14+q=17 | | (44+3)9-25= | | 8c-4(-5c-2)=12c | | 2(w*7)+2w=224 | | -1.33333333333(33+n)=12+n | | W^2+2=27 | | 3[6-x]=27 | | 2x+3y-z=-7 | | 100-1x=4x | | x+12=2x^2 | | 3y-7y+11=7 | | x+8x-5=-41 |

Equations solver categories